PanTau – Tau-Lepton-Identifikation mit Energiefluss in ATLAS

Sebastian Fleischmann, Christian Limbach, Robindra Prabhu

Physikalisches Institut – Universität Bonn

universität**bonn**

15. März 2010 DPG-Frühjahrstagung Bonn 2010 Parallelsitzung Tau-Physik

Übersicht

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

Zusammenfassung

1 Einleitung

- Tau-Leptonen
- Tau-Leptonen im ATLAS Detektor
- Energiefluss-Algorithmen
- 2 Rekonstruktion von τ -Leptonen
 - PanTau
 - Spurrekonstruktion
 - Kalorimeter-Cluster
 - Tau-Identifikation mit PanTau
- 3 Zusammenfassung

Allgemeine Eigenschaften von au-Leptonen

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

Der ATLAS Detektor

Sebastian Fleischmann

Übersicht

Einleitung

von τ -Leptonen

- Das ATLAS Liquid Argon Calorimeter
 - Hohe Granularität erlaubt es viele Eigenschaften von τ-Jets zu bestimmen

Wozu Energiefluss-Algorithmen?

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

- Bis hin zu mittleren π[±] Impulsen ist die Energieauflösung der Spurmessung besser als die (HAD) Kalorimetrie
- Versuche beide Messungen zu kombinieren

Energiefluss-Algorithmen

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

- Physik-motivierter Ansatz zur Kombination von Spurmessung und Kalorimetrie
- Benutze Spurinformation f
 ür geladene Teilchen und Kalorimeter nur f
 ür neutrale
- Daher: Subtrahiere Energiedeposition geladener Teilchen von Kalorimeter-Clustern
- Hauptfehlerquelle: "Double counting" von Energieeinträgen durch falsche Zuordnungen
- Allgemeine Implementation in ATLAS: "eflowRec" (M. Hodgkinson, D. Tovey, R. Duxfield)

Rekonstruktion von au-Leptonen

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

- Nur hadronische au Zerfälle werden hier betrachtet
- ► Zu leptonischen Zerfällen ($\tau \rightarrow \mu v_{\mu} v_{\tau}$): Siehe Vortrag von Christian Limbach

Rekonstruktion von au-Leptonen

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

Zusammenfassung

- Nur hadronische au Zerfälle werden hier betrachtet
- ▶ Zu leptonischen Zerfällen ($\tau \rightarrow \mu v_{\mu} v_{\tau}$): Siehe Vortrag von Christian Limbach

(Inner Detector) Tracking

- Spuren von π^{\pm}
 - Geringe Anzahl (1 oder 3)
 - Kollimiert
 - Isolation von anderen Spuren
- Sekundärer Vertex

Kalorimetrie

- Kollimierte Energiedeposition
- ► EM und HAD Komponente
 - Starke EM Komponente f
 ür 1-prong
 - Identifiziere π^{0} Sub-Cluster
- Isolation

Tau-Identifikation mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

```
Rekonstruktion
von
τ-Leptonen
```


Spurrekonstruktionseffizienz

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

- ▶ Hohe Spureffizienz für π^\pm aus au-Zerfällen wichtig für
 - verlässliche Ladungsrekonstruktion
 - Identifikation von τ-Zerfallsmoden

- Fehlende Spuren hauptsächlich durch hadronische Wechselwirkung im Inner Detector
- ► Problem: Zusätzliche Spuren von γ -Konversionen aus $\pi^0 \rightarrow \gamma \gamma$: Spurselektion ist wichtig!

Spurrekonstruktionseffizienz

Anzahl von rekonstruierten Spuren je Tau-Jet-Kandidat nach Ursprung (Monte Carlo Truth)

Aufspaltung von Kalorimeter-Clustern von π^{\pm}

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

- Hadronische Shower unregelmäßig: Geladene
 Pionen können mehr als einen Cluster erzeugen
- Stört jede Art von Tau-Rekonstruktion

- ► falsche "neutrale" Cluster
- ▶ falsche Zuordnung des Zerfallskanals und schlechte Energiemessung

Aufspaltung von Kalorimeter-Clustern von π^{\pm}

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

Zusammenfassung

Vor und nach Zusammenführung

Rekonstruierte geladene Komponenten von 1-prong τ -Zerfällen ohne neutrale Komponente ($\tau^{\pm} \rightarrow \pi^{\pm} v_{\tau}$) mit sichtbarer transversaler Energie 20 GeV < E_{T}^{vis} < 25 GeV

Identifikationsvariablen

 τ -ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

Zusammenfassung

0.01

2000

4000

6000

8000 Inv. Mass (neutral EFOs) [MeV]

Streuung der eflowObject-Energie

Multivariate Analyse in PanTau

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von 7-Leptonen

Invariante Massen der Resonanzen

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von τ-Leptonen

Zusammenfassung

τ-ID mit PanTau

Sebastian Fleischmann

Übersicht

Einleitung

Rekonstruktion von 7-Leptonen

- Basiert vollständig auf Energieflussalgorithmus "eflowRec"
- Erlaubt zerfallsmodenspezifische Rekonstruktion
- Diverse Verbesserungen am Energieflussalgorithmus "eflowRec" wurden vorgenommen
- Aufspaltung von Kalorimeter-Clustern und Spurselektion wurden als besonders wesentliche Punkte identifiziert
- Zur Identifikation von leptonischen Zerfällen siehe nächster Vortrag

